Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Public Health ; 11: 1111661, 2023.
Article in English | MEDLINE | ID: covidwho-2254633

ABSTRACT

Comprehensive surveillance systems are the key to provide accurate data for effective modeling. Traditional symptom-based case surveillance has been joined with recent genomic, serologic, and environment surveillance to provide more integrated disease surveillance systems. A major gap in comprehensive disease surveillance is to accurately monitor potential population behavioral changes in real-time. Population-wide behaviors such as compliance with various interventions and vaccination acceptance significantly influence and drive the overall epidemic dynamics in the society. Original infoveillance utilizes online query data (e.g., Google and Wikipedia search of a specific content topic such as an epidemic) and later focuses on large volumes of online discourse data about the from social media platforms and further augments epidemic modeling. It mainly uses number of posts to approximate public awareness of the disease, and further compares with observed epidemic dynamics for better projection. The current COVID-19 pandemic shows that there is an urgency to further harness the rich, detailed content and sentiment information, which can provide more accurate and granular information on public awareness and perceptions toward multiple aspects of the disease, especially various interventions. In this perspective paper, we describe a novel conceptual analytical framework of content and sentiment infoveillance (CSI) and integration with epidemic modeling. This CSI framework includes data retrieval and pre-processing; information extraction via natural language processing to identify and quantify detailed time, location, content, and sentiment information; and integrating infoveillance with common epidemic modeling techniques of both mechanistic and data-driven methods. CSI complements and significantly enhances current epidemic models for more informed decision by integrating behavioral aspects from detailed, instantaneous infoveillance from massive social media data.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Infodemiology , Attitude
2.
PLoS One ; 15(10): e0238186, 2020.
Article in English | MEDLINE | ID: covidwho-874156

ABSTRACT

Mathematical models are powerful tools to investigate, simulate, and evaluate potential interventions for infectious diseases dynamics. Much effort has focused on the Susceptible-Infected-Recovered (SIR)-type compartment models. These models consider host populations and measure change of each compartment. In this study, we propose an alternative patch dynamic modeling framework from pathogens' perspective. Each patch, the basic module of this modeling framework, has four standard mechanisms of pathogen population size change: birth (replication), death, inflow, and outflow. This framework naturally distinguishes between-host transmission process (inflow and outflow) and within-host infection process (replication) during the entire transmission-infection cycle. We demonstrate that the SIR-type model is actually a special cross-sectional and discretized case of our patch dynamics model in pathogens' viewpoint. In addition, this patch dynamics modeling framework is also an agent-based model from hosts' perspective by incorporating individual host's specific traits. We provide an operational standard to formulate this modular-designed patch dynamics model. Model parameterization is feasible with a wide range of sources, including genomics data, surveillance data, electronic health record, and from other emerging technologies such as multiomics. We then provide two proof-of-concept case studies to tackle some of the existing challenges of SIR-type models: sexually transmitted disease and healthcare acquired infections. This patch dynamics modeling framework not only provides theoretical explanations to known phenomena, but also generates novel insights of disease dynamics from a more holistic viewpoint. It is also able to simulate and handle more complicated scenarios across biological scales such as the current COVID-19 pandemic.


Subject(s)
Communicable Diseases/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Models, Theoretical , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/transmission , COVID-19 , Communicable Diseases/transmission , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology
3.
Open Forum Infect Dis ; 7(8): ofaa333, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-695443

ABSTRACT

Mathematical models are critical tools to characterize COVID-19 dynamics and take action accordingly. We identified 4 major challenges associated with the current modeling paradigm (SEIR) that hinder the efforts to accurately characterize the emerging COVID-19 and future epidemics. These challenges included (1) lack of consistent definition of "case"; (2) discrepancy between patient-level clinical insights and population-level modeling efforts; (3) lack of adequate inclusion of individual behavioral and social influence; and (4) allowing little flexibility of including new evidence and insights when our knowledge evolved rapidly during the pandemic. Therefore, these challenges made the current SEIR modeling paradigm less practical to handle the complex COVID-19 and future pandemics. Novel and more reliable data sources and alternative modeling paradigms are needed to address these issues.

SELECTION OF CITATIONS
SEARCH DETAIL